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We prove that forfEE=C(G) or LP(G), l,;;;p<oo, where G is any compact
connected Lie group, and for n~ 1, there is a trigonometric polynomial t n on G of
degree ';;;n so that Ilf - tnll E';;; C,w,(n ~1,f). Here w,(t,f) denotes the rth modulus
of continuity off Using this and sharp estimates of the Lebesgue constants recently
obtained by Giulini and Travaglini, we obtain "best possible" criteria for the norm
convergence of the Fourier series off © 1988 Academic Press, Inc.

1. INTRODUCTION

Let E be a Banach space of periodic functions on R, let fEE, and let
n ~ 1 be an integer. A basic problem in approximation theory is to estimate
the quantity

the infimum being taken over all trigonometric polynomials t of degree at
most n. Jackson's Theorem is the fundamental "direct theorem" here; it
asserts that if the rth derivative f(r) exists in E (in the appropriate sense)
and if E is suitable, then Sn(f) ~ Crn-rwj(n-t, prj) = o(n- r) (see [8]).
More precise versions of Jackson's Theorem provide estimates
Sn(f)~C,w,(n-l,f) for any fEE, where w,(t,f) is the rth modulus of
continuity of f

Jackson's Theorem extends in a straightforward way to periodic
functions of k variables (i.e., functions on the group T k

) and it is natural to
ask whether it also applies to functions on nonabelian groups. In this
paper, we prove that Jackson's Theorem is true for any compact connected
Lie group.
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THEOREM. Let G#- {I} be any compact connected Lie group. Let E
denote one of the spaces C(G) or LP(G), 1~ p < 00, and let r ~ 1 be an
integer. Then there is a constant Cr and for each integer n ~ 1 there is a
central trigonometric polynomial K n of degree ~ n such that

for each fEE.

Johnen [6] proved this theorem in the special case r =2, but our method
is quite different from his. The kernels K n are related to the fl> n of [3], but
even more to those used in [8,9] in proving the T k case.

As an application of our theorem, we use the sharp estimates for the
Lebesgue constants recently obtained by Giulini and Travaglini [4] to give
"best possible" criteria for the norm convergence of Fourier series of
functions on G.

2. NOTATION

We shall basically adopt the notation of [1], but see also (5] for some
terminology.

Let G be a compact connected Lie group, let T be a fixed maximal torus
in G and let g and t (c g) denote their respective Lie algebras. We choose
an inner product <,) on g which is invariant under the adjoint action of
G on g. This provides inner products on t and its dual t* which are
invariant under the action of the Weyl group W =N( T)/T. Let
1= {H E t: exp H = I} be the integral lattice and let 1* = {I' E t*: y(H) E Z
for all HE I} be the lattice of integral forms. For r~ 0, a trigonometric
polynomial on T of degree ~ r is a linear combination of the characters
(}y: exp HH e

21tiy
(H) of T, where I' E 1* and 111'11 ~ r. Here II II is the norm on

t* induced by <, ). Note that the degree of a trigonometric polynomial
need not be an integer.

Let R c 1* be the set of real roots of G. The characters (}a, IX E R, are the
nontrivial weights of the adjoint representation Ad of G on the com
plexification gc of g. Let {IX I' ... , IXI} be a basis for R and let K c t * be the
corresponding Weyl chamber and R + the corresponding set of positive
roots. The dual object G of G may be identified with K n 1* (see
[1,p.242]). If YEKnI*, let ~(G) denote the space of trigonometric
polynomials corresponding to I' [5, p.5]. A trigonometric polynomial
which is central (i.e., a class function) is a linear combination of the charac
ters xy associated to I' E K n 1*. For r ~ 0, a trigonometric polynomial on G
of degree ~r is a linear combination of functions in ~(G) for 111'11 ~ r.
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The above definitions of degree depend of course on the choice of <, ).
When G is semisimple, we may choose <, ) to be -ljJ, where ljJ is the
Killing form [1, p. 214]. When G is also simply connected, functionals
AI' ..., AlE t* satisfying 2(}~i' ak)/<ab ak) = Jjk for j, k = I, ..., I, are integral
forms, and KnI*= {nlA l + ... +nIAI:O~nl> ... ,nIEZ} ([1, p.255]).

Let fEE, where E=C(G) or LP(G), I~p<oo. For any integer r~1

and for t > 0, let

be the rth modulus of continuity of f Here

(1)

(2)

for x,hEG. We note that w,(t,f)=sup{IIL1/JIIE: hEG and d(l,h)~t},

where d is the geodesic distance on G induced by <, ) on g (see [7,
Eq. (1.1.7)]). We need here only the inequality w,(At,f)~ (l +,1,)' w,(t,f),
valid for A>O ([7, Eq. (1.1.10)]).

3. PROOF OF THE THEOREM

We first need two straightforward lemmas.

LEMMA 1. The restriction map ¢J H ¢J1T is a degree-preserving
isomorphism of the space of central trigonometric polynomials on G onto the
space of trigonometric polynomials on T invariant under the action of the
Weyl group.

Proof In view of [1, Corollary IV(2.7) and Proposition VI(2.1)], we
need only check that deg ¢J 1T= deg ¢J. Let 0"# ¢J =L yE K n I. ayXybe a central
trigonometric polynomial on G of degree r. Then r = max{ II y II :ay"# 0 }. By
[1, Proposition VI(2.6)], ¢J1T can be expressed in terms of symmetric sums
S(y),

¢J(exp H) = ~ ay[ S(y )(H) +~ ny.jS(Ay.j)(H)] ,

where Ay.jE K n 1* and Ay,j < y for each y, j. By [1, Proposition VI(2.4ii)],
IIAy.J ~ Ilyll ~r for each) if ay"#O. If we pick YoEKnI* such that ayo"#O
and IIYoll = r and Yo is maximal with respect to the partial order ~, then
the term aYOS(Yo)(H) will appear in (2) (i.e., will not be cancelled by any
term S(A y'))' Thus deg ¢J1T= r.
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LEMMA 2. Let s ~ 1 be an integer. Then, writing A(H) for A(Q )(H),
where Q=! L~ER+ rJ. [1, Chap. VI, Sect. 1], we have

IA(sH)/A(HW=t/Js(expH), for HEt,

for a central trigonometric polynomial t/J s on G of degree 2(s - 1) IIQII·

Proof By [1, Eq. VI(1.5)], we have

A(H)=e21[ieI H) Il (1_e-21[i~(H»)

exE R+

and so

2 1- O~(exp sH)
IA(sH)/A(H)1 = Il 1- f) ( H)

~E R ~ exp

=Il(Sff)~(t)k), for t=expH
~ER k=O

= t/J s(t), say.

Now t/J s is a trigonometric polynomial on T which is invariant under the
action of the Weyl group, since A(H) is alternating. Clearly t/Js is a linear
combination of Or's with Y of the form L~E R+ n~rJ. and In~1 ~ s - 1. So
IA(sH)/A(HW is a linear combination of symmetric sums S(y) with
YEKnl* and y~2(s-1)Q. Thus t/Js has degree 2(s-1) IIQII by [1,
Prop. VI(2.4ii)].

Proof of the Theorem.

For some k ~ 1 there is a diffeomorphism h: exp HH (e21[iY1 (H), ...,
e21[iYkI H)) of Tonto T k. This induces a linear isomorphism h*: t --+ R k

,

namely HH(Yl(H)"",Yk(H)). Let Q=h;l((_!,!]k), so that eXPIQ:
Q --+ T is a bijection. Since t ~ Rk, we can define the Schwartz space 9"(t) of
smooth functions on t all of whose derivatives tend to zero rapidly at
infinity (see, e.g., [10, Sect. I.3]). Let m denote Lebesgue measure on t,
normalized so that Le-1[II HII

2
dH = 1, where we write dH instead of dm(H).

Let t/J be a smooth function on t such that t/J(H) = 0 if IIHII ~ c, where
c=min{llwQ-QII:wEW,w#1} (=min{IIrJ.II:rJ.ER}), and such that
t/J(O)=m(Q). Replacing t/J by t/J#, where t/J#(H)=IW\-lLwEwt/J(wH),
we may suppose that t/J is W-invariant. Define r/J: t --+ C by
r/J(H) = f, t/J(H') e21[i(H,H') dH'. Then r/J has the following properties:

(i) r/J E Y'(t);

(ii) r/J is W-invariant;

(iii) ~(H) = 0 if IIHII ~ c; and

(iv) LIA(HWr/J(H)dH=IW\m(Q),

640/55/3-8
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where ~(H) = L~(H') e- Z1ti (H,H'> dH' is the Fourier transform of ~. The
first three properties clearly hold, since ~ (because of the normalization of
m) is the inverse Fourier transform of t/J, and Wacts orthogonally on t.
Also A(H) =LWE W det(w) eZ1tiQ (wH) and so

IA(HW= IWI +
W,W'E W,W#,-w'

= ~ a eZ1tiy(H)L, y ,

yEF

det(ww') eZ1ti(wQ-w'Q)(H)

where Fe 1* ([1, p. 207]) is finite, with ao= IWI and Ilyll = IIwe- w'ell ~ c
for some w, w' E W with w l' w' if 0 l' y E F. Thus L jA(HW ~(H) dH =
LYE F ayt/J( -y) =aot/J(O) = IWI m(Q) (identifying t and t*).

We now use the Poisson summation formula to construct for each
integer s ~ 1 a central trigonometric polynomial ~s on G of degree < cs. Let

~s(H)=Sk L ~(s(H+H')).
H'EI

Since ~ E 9"(t), this defines a smooth W-invariant function ~s on t such that
~s(H+ H') =~.(H) for H' E I. This corresponds to a W-invariant function
~s on T. For y E 1*, we have

=m(Q)-1 f ~s(H)e-Z1tiY(H)dH
Q

=Skm(Q)-1 f ~(sH)e-Z1tiY(H)dH
t

= m(Q)-I~(y/s)

= 0, if IIYII ~ cs.

Thus ~s is a W-invariant trigonometric polynomial of degree < cs. Now use
Lemma 1.

For an integer n~2(2I1ell+c)r!, let m be the integer part of
n/2(2I1ell + c)r!, and let n' = r!(m + 1). Define

Kn= itl (_I)i-
1 C) t/Jn'/i~n'/i'

By Lemma 2 and the above steps, Kn is a central trigonometric polynomial
on G of degree at most

2(n' -1) lIell +n'c< (211ell +c)(m+ l)r! ~n.
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By the Weyl integral formula (with '1 as in [1, Lemma VI(1.8)]),

(Kn * f)(y)

=f Kn(x)f(x-Iy) dx
G

357

= IWI-I IT '1(t) Kn(t) {t f(gt-Ig-Iy) dg} dt

=c f IA(HW Kn(exp H) J(H) dH
Q

=C jtl (-1)j-1 C) f
Q

jA(n'Hjj)12¢In'/AH) J(H) dH

= C jtl (-l)j-I C){IA(n'H/JW(n'/J)k ¢J(n'H/j) J(H) dH,

where C = (m(Q) IWI) -I and J(H) = fG f( g exp( - H) g-ly) dg. Changing
variables, this equals

C f jA(HW ¢J(H)
t

x {fa jtl (-1 )j-I C) f(g exp( - JH/n') g-Iy ) dg} dH

= f(y) + (_l),-IC f IA(HW ¢J(H)
t

x {t (Lf~xp(Ad(g)Hln') f)( y) dg} dH.

Thus, by Minkowski's inequality,

Ilf - Kn * filE

~C J, IA(HW I¢J(H)I {t 11.d~xP(Ad(g)H/n')fIIEdg} dH

~ C f IA(HW I¢J(H)I w,(IIHII/n', f) dH
t

~ C,w,(l/n, f),

as IIAd(g)H/n'll = IIHII/n' ~ 2(211ell + c) IIHII/n, where

C, = C f IA(HW I¢J(H)I (1 + 2(2 Ilell + c) IIHlI)' dH.
t
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Remark. If we modify the definition of OJr(t, f) by writing xhJ instead of
h - JX in (1), the theorem is still valid because Kn * f = f * Kn .

4. CONVERGENCE OF FOURIER SERIES

In this section G denotes a semisimple compact connected Lie group and
E= C(G) or L I(G). For fEE and n ~ 1, sJ= LYEC

n
dyXy* f is called the

nth spherical [resp. polyhedral] partial sum of the Fourier series
LrEl?nl.dyXr*f of f if Cn={YEKnI*: IIY+lJll::::;n} [resp. Cn=
{y E K n 1*: Y::::; nOJ}, where OJ E K n 1* is fixed]. Giulini and Travaglini [4]
have recently obtained sharp estimates of the so-called Lebesgue constants
suP{llsnfIIE: IlfIlE::::;1}=IILrEcndrXrlll in both these cases. In the case of
spherical partial sums, they showed that

cln(d-l)/2::::; II I drXrl1 ::::;C2 n(d-l)/2
rE en 1

holds for d = dim G and for suitable constants c l' C2 > 0, while for
polyhedral sums similar inequalities hold, but with (d - 1)/2 replaced by
IR + I. We can now state a refinement of the Proposition in [4].

PROPOSITION. Let G be a semisimple compact connected Lie group and
let E= C(G) or L1(G).

(a) If fEE and OJr(t,f)=0(t(d-I)/2) as t--+O for some integer
r ~ (d - 1)/2, then the spherical partial sums snf converge to f in E.

(b) There exists FEE such that OJ r( t, F) = O( ted - 1)/2) as t --+ 0 but for
which snF does not converge to F in E. In fact, if 0::::; s < (d - 1)/2 is an
integer, we may choose FEE(s) with OJ,_s(t,F(s»)=O(t(d-I)/2-s) for all
r~ (d-l)/2.

The corresponding result holds for polyhedral partial sums with (d - 1)/2
replaced by IR + 1 throughout.

Proof The proof is a simple modification of the proof of Theorem B in
[2], and is therefore omitted.

Remark. The restriction r ~ (d - 1)/2 on r in the Proposition is
necessary because OJ ,(t, f) = o( tr

) as t --+ 0 implies that f is constant. In fact,
if M=sup{d(1,h):hEG} and if 0< t::::;M, then (for E=C(G)),

If(g) - f(1)1 ::::; OJ 1(M,f) ::::; (1 + M/t) OJ1(t,f)::::; 2Mt -IOJ1(t,f).

This proves the assertion when r = 1. For general r, apply inequality (3.4)
in [6].
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